Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902125

RESUMO

Inflammatory breast cancer (IBC) is one of the most lethal subtypes of breast cancer (BC), accounting for approximately 1-5% of all cases of BC. Challenges in IBC include accurate and early diagnosis and the development of effective targeted therapies. Our previous studies identified the overexpression of metadherin (MTDH) in the plasma membrane of IBC cells, further confirmed in patient tissues. MTDH has been found to play a role in signaling pathways related to cancer. However, its mechanism of action in the progression of IBC remains unknown. To evaluate the function of MTDH, SUM-149 and SUM-190 IBC cells were edited with CRISPR/Cas9 vectors for in vitro characterization studies and used in mouse IBC xenografts. Our results demonstrate that the absence of MTDH significantly reduces IBC cell migration, proliferation, tumor spheroid formation, and the expression of NF-κB and STAT3 signaling molecules, which are crucial oncogenic pathways in IBC. Furthermore, IBC xenografts showed significant differences in tumor growth patterns, and lung tissue revealed epithelial-like cells in 43% of wild-type (WT) compared to 29% of CRISPR xenografts. Our study emphasizes the role of MTDH as a potential therapeutic target for the progression of IBC.


Assuntos
Neoplasias Inflamatórias Mamárias , Proteínas de Membrana , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Invasividade Neoplásica , Metástase Neoplásica
3.
J Cancer ; 13(14): 3495-3502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36484009

RESUMO

Background: Breast cancer (BC) is the most diagnosed cancer and the leading cause of cancer death among women in Puerto Rico (PR). Inflammatory breast cancer (IBC) is considered the most aggressive BC subtype. This study characterized the IBC population of Hispanic women living in Puerto Rico and aimed to estimate the IBC survival rate using data from the Puerto Rico Central Cancer Registry (PRCCR). Methods: This is a retrospective, population-based study using the PRCCR database and the Health Insurance Linkage Database (PRCCR-HILD). We analyzed data from patients that were diagnosed with IBC from January 1, 2008 to December 31, 2018. Patients were identified using the International Classification of Diseases for Oncology, 3rd edition (ICD-O-3) site codes C50.0-C50.9 and histology code 8530. Variables such as age at diagnosis, marital status, health insurance, geographic area of residence, staging variables, tumor receptor subtypes, treatment received, and overall survival (OS) were studied. Statistical analysis methods were employed to describe the population, estimate survival curves and examine the risk of dying. Results: The data of 51 patients were included. The mean age at diagnosis of IBC in the current study was 59 years old. A total of 62.8% of patients had no metastases at diagnosis and 64.7% were diagnosed with stage III disease. Most tumors presented with ER+/PR+/Her2- (21.6%), or a triple negative (ER-/PR-/Her2-, 15.7%) tumor concordance. The OS during the first year was 66% (90% CI: 0.54-0.76), whereas 36 months post-diagnosis was at a low 39% (90% CI: 0.27-0.59). The triple-negative subtype had the worst survival at 36 months (36% [90% CI: 0.11-0.62]). This study revealed through Cox regression analysis that women with stage IV disease and those with ER-/PR- tumor subtype have a higher risk of dying (HR 4.99; [90% CI: 2.30-10.83] and HR 4.74; [90% CI: 1.88-11.95]), respectively. Conclusions: Our results suggest that the Puerto Rican IBC patient population presents unique characteristics. This is the first research to describe the patient profile and characteristics of women diagnosed with IBC in PR. This research increases awareness about this lethal disease in PR.

4.
Cancers (Basel) ; 14(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35681787

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive, metastatic, and lethal breast cancer subtype. To improve the survival of TNBC patients, it is essential to explore new signaling pathways for the further development of effective drugs. This study aims to investigate the role of the secretory carrier membrane protein 3 (SCAMP3) in TNBC and its association with the epidermal growth factor receptor (EGFR). Through an internalization assay, we demonstrated that SCAMP3 colocalizes and redistributes EGFR from the cytoplasm to the perinucleus. Furthermore, SCAMP3 knockout decreased proliferation, colony and tumorsphere formation, cell migration, and invasion of TNBC cells. Immunoblots and degradation assays showed that SCAMP3 regulates EGFR through its degradation. In addition, SCAMP3 modulates AKT, ERK, and STAT3 signaling pathways. TNBC xenograft models showed that SCAMP3 depletion delayed tumor cell proliferation at the beginning of tumor development and modulated the expression of genes from the PDGF pathway. Additionally, analysis of TCGA data revealed elevated SCAMP3 expression in breast cancer tumors. Finally, patients with TNBC with high expression of SCAMP3 showed decreased RFS and DMFS. Our findings indicate that SCAMP3 could contribute to TNBC development through the regulation of multiple pathways and has the potential to be a target for breast cancer therapy.

5.
Am J Cancer Res ; 12(3): 1282-1294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411244

RESUMO

Inflammatory Breast Cancer (IBC) is a rare and aggressive type of breast cancer with a poor prognosis. Its management is challenging because of a lack of targeted therapies, increased metastatic potential, and high recurrence rates. Interest in using platinum agents such as carboplatin emerged from data suggesting frequent DNA repair defects in breast cancer. Because studies show that medicinal mushroom Ganoderma lucidum (GLE) sensitizes cancer cells to radiation and other drugs; herein, we aimed to investigate the therapeutic potential of GLE, alone or in combination with carboplatin in breast cancer models. Our studies were focused on the regulation of the DNA Damage Response (DDR) and on cancer cell stemness. Carboplatin and GLE were tested in vitro using the IBC cell line, SUM-149, breast cancer non-IBC cells, MDA-MB-231, and in vivo using IBC xenograft models. Our results show that the GLE/carboplatin combination decreased cell viability, induced cell death by two different mechanisms, and delayed the response to DNA damage. Furthermore, the combination suppressed mammosphere formation and the expression of cancer stemness proteins. In xenograft models, the combination showed significant tumor growth inhibitory effects without systemic toxicity. This study emphasizes the potential of this dual therapy for IBC patients.

6.
FEBS Open Bio ; 12(1): 95-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592066

RESUMO

Accumulation of amyloid in breast cancer is a well-known phenomenon, but only immunoglobulin light-chain amyloidosis (AL) or transthyretin (TTR) amyloid had been detected in human breast tumor samples previously. We recently reported that another amyloidogenic peptide, amyloid beta (Aß), is present in an aggregated form in animal and human high-grade gliomas and suggested that it originates systemically from the blood, possibly generated by platelets. To study whether breast cancers are also associated with these Aß peptides and in what form, we used a nude mouse model inoculated with triple-negative inflammatory breast cancer cell (SUM-149) xenografts, which develop noticeable tumors. Immunostaining with two types of specific antibodies for Aß identified the clear presence of Aß peptides associated with (a) carcinoma cells and (b) extracellular aggregated amyloid (also revealed by Congo red and thioflavin S staining). Aß peptides, in both cells and in aggregated amyloid, were distributed in clear gradients, with maximum levels near blood vessels. We detected significant presence of amyloid precursor protein (APP) in the walls of blood vessels of tumor samples, as well as in carcinoma cells. Finally, we used ELISA to confirm the presence of elevated levels of mouse-generated Aß40 in tumors. We conclude that Aß in inflammatory breast cancer tumors, at least in a mouse model, is always present and is concentrated near blood vessels. We also discuss here the possible pathways of Aß accumulation in tumors and whether this phenomenon could represent the specific signature of high-grade cancers.


Assuntos
Doença de Alzheimer , Neoplasias Inflamatórias Mamárias , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Xenoenxertos , Humanos , Camundongos , Camundongos Transgênicos
7.
Artigo em Inglês | MEDLINE | ID: mdl-34444002

RESUMO

The U.S. Hispanic female population has one of the highest breast cancer (BC) incidence and mortality rates, while BC is the leading cause of cancer death in Puerto Rican women. Certain foods may predispose to carcinogenesis. Our previous studies indicate that consuming combined soy isoflavones (genistein, daidzein, and glycitein) promotes tumor metastasis possibly through increased protein synthesis activated by equol, a secondary dietary metabolite. Equol is a bacterial metabolite produced in about 20-60% of the population that harbor and exhibit specific gut microbiota capable of producing it from daidzein. The aim of the current study was to investigate the prevalence of equol production in Puerto Rican women and identify the equol producing microbiota in this understudied population. Herein, we conducted a cross-sectional characterization of equol production in a clinically based sample of eighty healthy 25-50 year old Puerto Rican women. Urine samples were collected and evaluated by GCMS for the presence of soy isoflavones and metabolites to determine the ratio of equol producers to equol non-producers. Furthermore, fecal samples were collected for gut microbiota characterization on a subset of women using next generation sequencing (NGS). We report that 25% of the participants were classified as equol producers. Importantly, the gut microbiota from equol non-producers demonstrated a higher diversity. Our results suggest that healthy women with soy and high dairy consumption with subsequent equol production may result in gut dysbiosis by having reduced quantities (diversity) of healthy bacterial biomarkers, which might be associated to increased diseased outcomes (e.g., cancer, and other diseases).


Assuntos
Equol , Isoflavonas , Adulto , Estudos Transversais , Suplementos Nutricionais , Feminino , Hispânico ou Latino , Humanos , Pessoa de Meia-Idade , Pós-Menopausa
8.
Trends Cancer ; 7(5): 385-388, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33563577

RESUMO

Scientists at all career stages can benefit from building diverse mentoring networks that transcend boundaries and promote inclusion. In this piece, we define mentoring networks, describe examples of how mentoring networks can reinforce scientific identity, and help minority scientists overcome unique challenges to achieve their goals in cancer research.


Assuntos
Pesquisa Biomédica/organização & administração , Diversidade Cultural , Tutoria/organização & administração , Grupos Minoritários , Rede Social , Humanos , Mentores , Neoplasias , Pesquisadores/educação , Pesquisadores/organização & administração
9.
Cancers (Basel) ; 11(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658643

RESUMO

The paracrine interaction between tumor cells and adjacent stroma has been associated with the oncogenic activity of the Hedgehog (Hh) pathway in triple-negative breast tumors. The present study developed a model of paracrine Hh signaling and examined the impact of mesenchymal cell sources and culture modalities in the oncogenicity of the Hh pathway in breast tumor cells. Studies consisted of tumor cell monocultures and co-cultures with cancer-associated and normal fibroblasts, tumor cells that undergo epithelial-mesenchymal transition (EMT), or adipose-derived mesenchymal stem cells (ADMSCs). Hh ligand and pathway inhibitors, GANT61 and NVP-LDE225 (NVP), were evaluated in both cell cultures and a mouse xenograft model. Results in monocultures show that tumor cell viability and Hh transcriptional activity were not affected by Hh inhibitors. In co-cultures, down-regulation of GLI1, SMO, and PTCH1 in the stroma correlated with reduced tumor growth rates in xenografted tumors and cell cultures, confirming a paracrine interaction. Fibroblasts and EMT cells supported Hh transcriptional activity and enhanced tumor cell growth. Mixed and adjacent culture modalities indicate that tumor growth is supported via fibroblast-secreted soluble factors, whereas enriched tumor stemness requires close proximity between tumor and fibroblasts. Overall this study provides a tumor-mesenchymal model of Hh signaling and highlights the therapeutic value of mesenchymal cells in the oncogenic activity of the Hh pathway.

10.
Nutrients ; 11(5)2019 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109134

RESUMO

Breast cancer (BC) is the second leading cause of cancer death among women worldwide. The main cause of BC morbidity and mortality is the invasiveness capacity of cancer cells that may lead to metastasis. Here, we aimed to investigate the therapeutic efficacy of Ganoderma lucidum extract (GLE)-a medicinal mushroom with anticancer properties-on BC motility via the Rac/Lamellipodin pathway. GLE treatment effects were tested on MDA-MB-231 breast cancer cells. The effects were tested on cell viability, migration and invasion. Pulldowns, immunoblotting, and immunofluorescence were used to measure Rac activity and the expression of proteins involved in cell migration and in lamellipodia formation, respectively. As a result, GLE suppressed BC cell viability, migration, and invasion capacity. GLE impaired Rac activity, as well as downregulated Lamellipodin, ENA/VASP, p-FAK (Tyr925), Cdc42, and c-Myc expression. Lamellipodia formation was significantly reduced by GLE. In conclusion, we demonstrate that GLE reduces Rac activity and downregulates signaling molecules involved in lamellipodia formation. These novel findings serve as basis for further studies to elucidate the potential of GLE as a therapeutic agent regulating the Rac/Lamellipodin pathway in BC metastasis.


Assuntos
Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Neoplasias da Mama/terapia , Proteínas de Transporte/metabolismo , Movimento Celular/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Reishi , Proteínas rac de Ligação ao GTP/metabolismo , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Feminino , Humanos , Invasividade Neoplásica/prevenção & controle , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pseudópodes/efeitos dos fármacos , Transdução de Sinais
11.
Org Biomol Chem ; 17(21): 5223-5229, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31025693

RESUMO

Ergosterol peroxide selectively exhibits biological activity against a wide range of diseases; however, its mode of action remains unknown. Here, we present an efficient synthesis of ergosterol peroxide chemical probes for in vitro anticancer evaluation, live cell studies and proteomic profiling. Ergosterol peroxide analogues show promising anti-proliferation activity against triple negative breast cancer cellular models, revealing information on the structure-activity relationship of this natural product in order to develop superior analogues. The combined cellular studies demonstrate that ergosterol peroxide is distributed across the cytosol with significant accumulation in the endoplasmic reticulum (ER). These chemical probes support our efforts towards uncovering the potential target(s) of ergosterol peroxide against triple negative breast cancer cell lines.


Assuntos
Antineoplásicos/química , Ergosterol/análogos & derivados , Corantes Fluorescentes/química , Imagem Óptica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ergosterol/síntese química , Ergosterol/química , Ergosterol/farmacologia , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Humanos , Microscopia de Fluorescência , Conformação Molecular , Neoplasias de Mama Triplo Negativas/patologia
12.
Front Pharmacol ; 10: 115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837881

RESUMO

We previously reported that Ganoderma lucidum extract (GLE) demonstrate significant anti-cancer activity against triple negative inflammatory breast cancer models. Herein, we aimed to elucidate the bioactive compounds of GLE responsible for this anti-cancer activity. We performed NMR, X-ray crystallography and analog derivatization as well as anti-cancer activity studies to elucidate and test the compounds. We report the structures of the seven most abundant GLE compounds and their selective efficacy against triple negative (TNBC) and inflammatory breast cancers (IBC) and other human cancer cell types (solid and blood malignancies) to illustrate their potential as anti-cancer agents. Three of the seven compounds (ergosterol, 5,6-dehydroergosterol and ergosterol peroxide) exhibited significant in vitro anti-cancer activities, while we report for the first time the structure elucidation of 5,6-dehydroergosterol from Ganoderma lucidum. We also show for the first time in TNBC/IBC cells that ergosterol peroxide (EP) displays anti-proliferative effects through G1 phase cell cycle arrest, apoptosis induction via caspase 3/7 activation, and PARP cleavage. EP decreased migratory and invasive effects of cancer cells while inhibiting the expression of total AKT1, AKT2, BCL-XL, Cyclin D1 and c-Myc in the tested IBC cells. Our investigation also indicates that these compounds induce reactive oxygen species, compromising cell fate. Furthermore, we generated a superior derivative, ergosterol peroxide sulfonamide, with improved potency in IBC cells and ample therapeutic index (TI > 10) compared to normal cells. The combined studies indicate that EP from Ganoderma lucidum extract is a promising molecular scaffold for further exploration as an anti-cancer agent.

13.
Oncotarget ; 9(89): 35907-35921, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30542507

RESUMO

The aggressive nature of triple negative breast cancer (TNBC) may be explained in part by the presence of breast cancer stem cells (BCSCs), a subpopulation of cells, which are involved in tumor initiation, progression, metastasis, recurrence, and therapy resistance. The signal transducer and activator of transcription 3 (STAT3) pathway participates in the development and progression of BCSCs, but its role in TNBC remains unclear. Here, we report that Ganoderma lucidum extract (GLE), a medicinal mushroom with anticancer activity, acts on BCSCs in vitro and in TNBC pre-clinical animal tumor models by downregulating the STAT3 pathway. We show that GLE significantly reduces TNBC cell viability, and down-regulates total and phosphorylated STAT3 expression. This is consistent with the reduction of OCT4, NANOG and SOX2 expression, reduction in the BCSC population by loss of the ALDH1 and CD44+/CD24- population, the deformation of mammospheres, and the strong reduction in animal tumor volume and tumor weight. Analysis of the BCSC compartment in tumors revealed that GLE decreases the STAT3 pathway and the expression of OCT4, NANOG, and SOX2 in BCSCs. These findings demonstrate that the anti-cancer activity of GLE targets BCSCs of TNBC through the downregulation of the STAT3 pathway.

14.
Medicines (Basel) ; 4(1)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28758107

RESUMO

For the past several decades, cancer patients in the U.S. have chosen the use of natural products as an alternative or complimentary medicine approach to treat or improve their quality of life via reduction or prevention of the side effects during or after cancer treatment. The genus Ganoderma includes about 80 species of mushrooms, of which several have been used for centuries in traditional Asian medicine for their medicinal properties, including anticancer and immunoregulatory effects. Numerous bioactive compounds seem to be responsible for their healing effects. Among the approximately 400 compounds produced by Ganoderma spp., triterpenes, peptidoglycans and polysaccharides are the major physiologically-active constituents. Ganoderma anticancer effects are attributed to its efficacy in reducing cancer cell survival and growth, as well as by its chemosensitizing role. In vitro and in vivo studies have been conducted in various cancer cells and animal models; however, in this review, we focus on Ganoderma's efficacy on breast cancers. Evidence shows that some species of Ganoderma have great potential as a natural therapeutic for breast cancer. Nevertheless, further studies are needed to investigate their potential in the clinical setting and to translate our basic scientific findings into therapeutic interventions for cancer patients.

15.
Am J Cancer Res ; 6(8): 1720-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648361

RESUMO

Inflammatory Breast Cancer (IBC) is the most lethal form of breast cancer with a 35% 5-year survival rate. The accurate and early diagnosis of IBC and the development of targeted therapy against this deadly disease remain a great medical challenge. Plasma membrane proteins (PMPs) such as E-cadherin and EGFR, play an important role in the progression of IBC. Because the critical role of PMPs in the oncogenic processes they are the perfect candidates as molecular markers and targets for cancer therapies. In the present study, Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) followed by mass spectrometry analysis was used to compare the relative expression levels of membrane proteins (MP) between non-cancerous mammary epithelial and IBC cells, MCF-10A and SUM-149, respectively. Six of the identified PMPs were validated by immunoblotting using the membrane fractions of non-IBC and IBC cell lines, compared with MCF-10A cells. Immunohistochemical analysis using IBC, invasive ductal carcinoma or normal mammary tissue samples was carried out to complete the validation method in nine of the PMPs. We identified and quantified 278 MPs, 76% of which classified as PMPs with 1.3-fold or higher change. We identified for the first time the overexpression of the novel plasminogen receptor, PLGRKT in IBC and of the carrier protein, SCAMP3. Furthermore, we describe the positive relationship between L1CAM expression and metastasis in IBC patients and the role of SCAMP3 as a tumor-related protein. Overall, the membrane proteomic signature of IBC reflects a global change in cellular organization and suggests additional strategies for cancer progression. Together, this study provides insight into the specialized IBC plasma membrane proteome with the potential to identify a number of novel therapeutic targets for IBC.

16.
J Cancer ; 7(5): 500-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958085

RESUMO

The high incidence of resistance to Tyrosine Kinase Inhibitors (TKIs) targeted against EGFR and downstream pathways has increased the necessity to identify agents that may be combined with these therapies to provide a sustained response for breast cancer patients. Here, we investigate the therapeutic potential of Ganoderma lucidum extract (GLE) in breast cancer, focusing on the regulation of the EGFR signaling cascade when treated with the EGFR TKI, Erlotinib. SUM-149, or intrinsic Erlotinib resistant MDA-MB-231 cells, and a successfully developed Erlotinib resistant cell line, rSUM-149 were treated with increasing concentrations of Erlotinib, GLE, or their combination (Erlotinib/GLE) for 72h. Treatment effects were tested on cell viability, cell proliferation, cell migration and invasion. To determine tumor progression, severe combined immunodeficient mice were injected with SUM-149 cells and then treated with Erlotinib/GLE or Erlotinib for 13 weeks. We assessed the protein expression of ERK1/2 and AKT in in vitro and in vivo models. Our results show that GLE synergizes with Erlotinib to sensitize SUM-149 cells to drug treatment, and overcomes intrinsic and developed Erlotinib resistance. Also, Erlotinib/GLE decreases SUM-149 cell viability, proliferation, migration and invasion. GLE increases Erlotinib sensitivity by inactivating AKT and ERK signaling pathways in our models. We conclude that a combinatorial therapeutic approach may be the best way to increase prognosis in breast cancer patients with EGFR overexpressing tumors.

17.
Molecules ; 20(10): 18437-63, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26473811

RESUMO

Cladribine, 2-chloro-2'-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2'-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic leukemia (CLL), cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribose analogue of cladribine showed activity, but was the least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, cladribine and its ribose analogue were most active.


Assuntos
Antineoplásicos/síntese química , Cladribina/síntese química , Guanosina/síntese química , Leucócitos Mononucleares/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cladribina/farmacologia , Guanosina/farmacologia , Humanos , Concentração Inibidora 50 , Leucemia de Células Pilosas/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/patologia , Linfoma de Células T/patologia , Compostos Organofosforados/química , Cultura Primária de Células , Relação Estrutura-Atividade
18.
BMC Complement Altern Med ; 15: 244, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198986

RESUMO

BACKGROUND: The increasing numbers of people who use plant-based remedies as alternative or complementary medicine call for the validation of less known herbal formulations used to treat their ailments. Since Puerto Rico has the highest rate of Type 2 diabetes within all the states and territories of the United States, and Puerto Ricans commonly use plants as diabetes adjuvants, it is important to study the plants' physiological effects, and identify their bioactive compounds to understand their role in modulation of blood glucose levels. We present the phytochemical profiles and hypoglycemic effects of Tapeinochilus ananassae, Costus speciosus and Syzygium jambos. METHODS: Phytochemicals in methanolic and aqueous extracts were analyzed by thin layer chromatography (TLC). Alkaloids (Bromocresol green, λ=470 nm), flavonoids (AlCl3, λ=415 nm), saponins (DNS, λ=760 nm), tannins (FeCl3/K4Fe(CN)6, λ=395 nm) and phenolics (Folin-Ciocalteau, λ=765 nm) were quantified. Male C57BLKS/J (db/db) and C57BL/J (ob/ob) genetically obese mice were orally gavaged with aqueous extracts of lyophilized plant decoctions for 10 wks. RESULTS: Our results show that T. ananassae had significantly greater amounts of flavonoids and tannins, while S. jambos showed the greatest concentration of phenolics and C. speciosus exhibited higher amounts of alkaloids. C57BLKS/J db/db treated with plant extracts show better glucose modulation when the extracts are administered in complement with an insulin injection. Finally, C57BL/J ob/ob mice on T. ananassae and S. jambos treatments show better blood glucose modulation over time. CONCLUSION: These results document for the first time the chemical profile of T. ananassae and provide evidence for a potential anti-diabetic efficacy of T. ananassae and S. jambos.


Assuntos
Glicemia/efeitos dos fármacos , Hipoglicemiantes , Extratos Vegetais , Syzygium/química , Zingiberales/química , Animais , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Porto Rico
19.
PLoS One ; 8(2): e57431, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468988

RESUMO

The medicinal mushroom Ganoderma lucidum (Reishi) was tested as a potential therapeutic for Inflammatory Breast Cancer (IBC) using in vivo and in vitro IBC models. IBC is a lethal and aggressive form of breast cancer that manifests itself without a typical tumor mass. Studies show that IBC tissue biopsies overexpress E-cadherin and the eukaryotic initiation factor 4GI (eIF4GI), two proteins that are partially responsible for the unique pathological properties of this disease. IBC is treated with a multimodal approach that includes non-targeted systemic chemotherapy, surgery, and radiation. Because of its non-toxic and selective anti-cancer activity, medicinal mushroom extracts have received attention for their use in cancer therapy. Our previous studies demonstrate these selective anti-cancer effects of Reishi, where IBC cell viability and invasion, as well as the expression of key IBC molecules, including eIF4G is compromised. Thus, herein we define the mechanistic effects of Reishi focusing on the phosphoinositide-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, a regulator of cell survival and growth. The present study demonstrates that Reishi treated IBC SUM-149 cells have reduced expression of mTOR downstream effectors at early treatment times, as we observe reduced eIF4G levels coupled with increased levels of eIF4E bound to 4E-BP, with consequential protein synthesis reduction. Severe combined immunodeficient mice injected with IBC cells treated with Reishi for 13 weeks show reduced tumor growth and weight by ∼50%, and Reishi treated tumors showed reduced expression of E-cadherin, mTOR, eIF4G, and p70S6K, and activity of extracellular regulated kinase (ERK1/2). Our results provide evidence that Reishi suppresses protein synthesis and tumor growth by affecting survival and proliferative signaling pathways that act on translation, suggesting that Reishi is a potential natural therapeutic for breast and other cancers.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Inflamatórias Mamárias/terapia , Reishi/química , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Primers do DNA , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/metabolismo
20.
Nutr Cancer ; 63(7): 1085-94, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21888505

RESUMO

Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Reishi/química , Apoptose/efeitos dos fármacos , Western Blotting , Caderinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Fator de Iniciação Eucariótico 4G , Feminino , Imunofluorescência , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , delta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...